Spatio-temporal Road Condition Forecasting with Markov Chains and Artificial Neural Networks
نویسندگان
چکیده
Preservation of the road assets value in an efficient manner is an important aim for developed road administrations. The task requires accurate road maintenance that is planned in advance. Forecasting road condition in the future is a prerequisite for optimisation of maintenance treatments. In this study two hybrid methods are introduced for forecasting road roughness and rutting. Markovian models outperform artificial neural network models and roughness can be forecast more accurately than rutting.
منابع مشابه
Spatio-temporal Graph Convolutional Neural Network: A Deep Learning Framework for Traffic Forecasting
The goal of traffic forecasting is to predict the future vital indicators (such as speed, volume and density) of the local traffic network in reasonable response time. Due to the dynamics and complexity of traffic network flow, typical simulation experiments and classic statistical methods cannot satisfy the requirements of mid-and-long term forecasting. In this work, we propose a novel deep le...
متن کاملShort-Term Traffic Forecasting: Modeling and Learning Spatio-Temporal Relations in Transportation Networks Using Graph Neural Networks
Short Term Tra c Forecasting: Modeling and Learning Spatio Temporal Relations in Transportation Networks Using Graph Neural Networks
متن کاملمعرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کامل